Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            Highly concentrated solutions of asymmetric semiconductor magic-sized clusters (MSCs) of cadmium sulfide, cadmium selenide, and cadmium telluride were directed through a controlled drying meniscus front, resulting in the formation of chiral MSC assemblies. This process aligned their transition dipole moments and produced chiroptic films with exceptionally strong circular dichroism.G-factors reached magnitudes as high as 1.30 for drop-cast films and 1.06 for patterned films, approaching theoretical limits. By controlling the evaporation geometry, various domain shapes and sizes were achieved, with homochiral domains exceeding 6 square millimeters that transition smoothly between left- and right-handed chirality. Our results uncovered fundamental relationships between meniscus deposition processes, the alignment of supramolecular filaments and their MSC constituents, and their connection to emergent chiral properties.more » « lessFree, publicly-accessible full text available January 31, 2026
- 
            Abstract Electrochemical CO2reduction offers a compelling route to mitigate atmospheric CO2concentration and store intermittent renewable energy in chemical bonds. Beyond C1, C2+feedstocks are more desirable due to their higher energy density and more significant market need. However, the CO2‐to‐C2+reduction suffers from significant barriers of CC coupling and complex reaction pathways. Due to remarkable tunability over morphology/pore architecture along with great feasibility of functionalization to modify the electronic and geometric structures, carbon materials, serving as active components, supports, and promoters, provide exciting opportunities to tune both the adsorption properties of intermediates and the local reaction environment for the CO2reduction, offering effective solutions to enable CC coupling and steer C2+evolution. However, general design principles remain ambiguous, causing an impediment to rational catalyst refinement and application thrusts. This review clarifies insightful design principles for advancing carbon materials. First, the current performance status and challenges are discussed and effective strategies are outlined to promote C2+evolution. Further, the correlation between the composition, structure, and morphology of carbon catalysts and their catalytic behavior is elucidated to establish catalytic mechanisms and critical factors determining C2+performance. Finally, future research directions and strategies are envisioned to inspire revolutionary advancements.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
